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Abstract
In discussing the signatures available from high intensity Compton scattering,
a problem of considerable interest in photon scattering from active galactic
nuclei and their emission jets, Harvey et al (2009 Phys. Rev. A 79 063407)
showed that the properties of some other than conventional Kapteyn series
play fundamental roles in determining the spectral output both with respect to
frequency and with respect to emission angle. While they were able to provide
bounds to the required series in terms of known Kapteyn series that could be
summed analytically in closed form, only numerical analysis could take their
investigation further as they demonstrated. The purpose of this paper is to
show that the many Kapteyn series involved in the scattering problem can all
be reduced either to analytic form or to a single Kapteyn series that cannot be
evaluated in closed form but for which an integral representation is available.
This reduction is of considerable benefit in controlling the correctness and
accuracy of numerical investigations; the reduction also provides significant
insight into some basic procedures for summing such unconventional Kapteyn
series as well as allowing a better understanding of the dependence of the
scattering on the physical parameters involved than would be the case directly
from the series.

PACS number: 34.50.−s

1. Introduction

The evaluation of Compton scattering from high intensity radiation is a subject that has recently
come under intense scrutiny (Harvey et al 2009) for many reasons not the least of which is
the application of such scattering to active galactic nuclei (AGNs) and the corresponding
emission jets (see, e.g., Krolik (1998) and Rees (1984) for an introduction to the subject).
The understanding of Compton scattering is also important for the production of high-energy
cosmic ray particles in AGNs (Biermann et al 2009) and, with relation to observational issues,
for the identification and for distinguishing different AGN spectral properties, as for example
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shown by Tozzi et al (2006) for the Chandra Deep Field South. A related application of
Compton scattering is the heating and cooling of electrons (the so-called radiative feedback
mechanism), which is important if one wants to understand the effect AGNs have on galaxy
formation and evolution (Yuan et al 2009). Furthermore, the interpretation of variability
studies and flare emission in Sgr A� depends on inverse Compton scattering that has to be
understood first (Yusef-Zadeh et al 2006).

Although the application of Harvey et al (2009) that motivated this article was more in
the realm of laboratory high intensity Compton scattering, their procedure is, nevertheless,
precisely that which is required in the astrophysical domain. In evaluating the processes
involved, one is confronted with a slew of summations of Kapteyn series (Kapteyn 1893) of
the second kind that involve the product of two Bessel functions in which the arguments are of
the form nz, with z being a fixed parameter and n the summation index (see Watson (1966)).
In addition, there are coefficients multiplying the Bessel functions that are also dependent on
the summation index n.

It is of considerable interest to attempt to sum such series so that the structural dependence
of the desired radiation spectra can be provided in a more cogent manner than is available
from the infinite Kapteyn series representations. While Harvey et al (2009) were able to
provide limits to the relevant series in terms of Kapteyn series that are analytically available in
closed form, they also noted that they had been unable to perform the required series in closed
form—a necessary step on the road to showing how the radiation spectra are influenced by the
various parameters entering the high intensity scattering problem. The alternative is a brute
force numerical evaluation which suffers from the drawbacks that one does not have a clear
picture of general dependences nor is it that simple to determine the numerical accuracy of
such results—a point emphasized in considerable detail by Harvey et al (2009).

The purpose of this paper is to show that the many Kapteyn series of the second kind
involved in the scattering problem can all be reduced to the evaluation of just a single Kapteyn
series but that this last Kapteyn series cannot be reduced to analytic form rather just to an
integral representation. However, such information is also of great benefit for one can use
the integral representation and the series representation to control the numerical accuracy. In
addition one can see better the parameter dependence of the integral and one can also make
asymptotic expansions of the integral under controlled conditions, something which is not as
easy to do or justify when one has infinite series involved. One can also determine the range
of convergence of integrals somewhat better than Kapteyn series and one can also estimate
residual corrections in a cleaner way. For all these reasons it is appropriate to discuss the
methods and procedures required to bring the many Kapteyn series involved in the scattering
problem to some form of order. It may also be that such a discussion will be of use in
other problems involving Kapteyn series, which is another powerful incentive to give such an
investigation here.

2. Technical development

2.1. Series connections

There are two fundamental groups of Kapteyn series involved in the high intensity scattering
problem. These groups are

SN,M(x, z) =
∞∑

n=1

nN

(1 + nx)M
J 2

n (nz) (1)
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and

TN,M(x, z) =
∞∑

n=1

nN

(1 + nx)M
J ′

n

2
(nz), (2)

with N ∈ {1, 2, 3} and, independently, M ∈ {2, 3}. Furthermore, J ′
n is the derivative of the

Bessel function Jn with respect to the argument, nz.
There is a close connection between the groups SN,M and TN,M as follows. Consider

F(z) =
∞∑

n=1

a(n)J 2
n (nz) (3)

and

G(z) =
∞∑

n=1

a(n)J ′
n

2
(nz), (4)

where a(n) is arbitrary but known.
Then

dG

dz
= 2

∞∑
n=1

na(n)J ′n(nz)J ′′
n (nz). (5)

Use Bessel’s equation in the form

J ′′
n (nz) = 1

z2

[
(1 − z2)Jn(nz) − z

n
J ′

n(nz)

]
(6)

when
dG

dz
= −2

z
G +

1 − z2

z2

dF

dz
. (7)

Hence if F is known in closed form, then one has

G(z) = 1

z2

[
(1 − z2)F + 2

∫ z

0
du uF(u)

]
. (8)

Conversely, if G is known in closed form, then

F(z) = z2

1 − z2
G − 2

∫ z

0
du

u3

(1 − u2)2
G(u). (9)

Thus, it is only necessary to evaluate in closed form either SN,M or TN,M with TN,M or SN,M

being given as a quadrature, respectively.

2.2. Reduction of the series SN,M

Consider

QN(y, z) =
∞∑

n=1

nN

n + y
J 2

n (nz), (10)

with y = 1/x. It is sufficient to consider QN because

∂M−1QN

∂yM−1
= (−1)M−1(M − 1)!

∞∑
n=1

nN

(n + y)M
J 2

n (nz) (11a)

≡ (−1)M−1(M − 1)! xM SN,M(x, z), (11b)

with again x = 1/y. Now for QN there are three values of N to consider: N = 1, 2 and 3.

3



J. Phys. A: Math. Theor. 43 (2010) 115207 I Lerche and R C Tautz

Then with y = 1/x one has

Q1(y, z) =
∞∑

n=1

J 2
n (nz) − y

∞∑
n=1

J 2
n (nz)

n + y
(12a)

Q2(y, z) =
∞∑

n=1

nJ 2
n (nz) − y

∞∑
n=1

J 2
n (nz) + y2

∞∑
n=1

J 2
n (nz)

n + y
(12b)

Q3(y, z) =
∞∑

n=1

n2J 2
n (nz) + y2

∞∑
n=1

J 2
n (nz) − y

∞∑
n=1

nJ 2
n (nz) − y3

∞∑
n=1

J 2
n (nz)

n + y
. (12c)

Several of the components of Q1, Q2 and Q3 are known in closed form. Schott (1912)
showed that

∞∑
n=1

J 2
n (nz) = 1

2

(
1√

1 − z2
− 1

)
. (13)

Equally, one has

∞∑
n=1

n2J 2
n (nz) = z2(4 + z2)

16(1 − z2)7/2
(14)

leaving, therefore, the two basic series

A(z) =
∞∑

n=1

nJ 2
n (nz) (15)

and

B(x, z) =
∞∑

n=1

J 2
n (nz)

1 + nx
, (16)

to be evaluated. Now

∂B

∂x

∣∣∣∣
x=0

= −
∞∑

n=1

nJ 2
n (nz) = −A, (17)

so that it is both necessary and sufficient to evaluate the series B.

2.3. The series B

Write the series B in the form

B(z) =
∫ ∞

0
du e−u

∞∑
n=1

e−unxJ 2
n (nz). (18)

Now use the well-known representation (e.g. Gradshteyn and Ryzhik 2000)

J 2
n (nz) = 2

π2
(−1)n

∫ π/2

0
dθ

∫ π/2

0
dψ[cos(2na+) + cos(2na−)] (19)

with

a± = z cos θ sin ψ ± θ (20)
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when one can write

B(x, z) = 2

π2

∫ ∞

0
du e−u

∫ π/2

0
dθ

∫ π/2

0
dψ

×
∞∑

n=1

(−1)n e−unx [cos(2na+) + cos(2na−)] . (21)

Because

∞∑
n=1

(−1)ne−unx cos(2na±) = − e−ux[cos(2a±) + e−ux]

1 + 2e−ux cos(2a±) + e−2ux
(22a)

≡ 1

2x

∂

∂u
ln[1 + 2e−ux cos(2a±) + e−2ux], (22b)

then

B(x, z) = 1

π2x

∫ π/2

0
dθ

∫ π/2

0
dψ (J− + J+) (23)

with

J± =
∫ ∞

0
du e−u ∂

∂u
ln[1 + 2e−ux cos(2a±) + e−2ux]. (24)

With e−u = q one has

J± =
∫ 1

0
dq ln[1 + 2 cos(2a±)qx + q2x] − ln[2 + 2 cos(2a±)], (25)

thus simplifying the integration of equation (23).
Note that the series given in equation (22a) is conditionally convergent in the sense that for

all positive x (excluding x = 0) the given summation is correct. However, on precisely x = 0
the series consists of delta functions so that one is reduced to using the Schott formula for the
series given in equation (16) for that unique value of x = 0. For all other values of positive
x the closed form expression (22a) is valid. And the derivative dB/dx evaluated on x = 0 is
also valid as obtained from equation (22a) and provides an elliptic integral representation for
the series A given through equation (15), which integral representation is precisely that given
in Tautz and Lerche (2009).

While the integrals are not expressible in closed form for arbitrary values of x, they
have several advantages over the direct representation of the various Kapteyn series. First,
accurate numerical evaluation of integrals is considerably simpler to control than infinite
series evaluation. Second, one can see immediately the structural dependence on the relevant
parameters, something that is difficult to do with infinite series. Third, asymptotic evaluation
of integrals for small or large parameter values is a mature subject so one can quickly
determine relevant behavior of the many Kapteyn series involved in the high intensity Compton
scattering.

2.4. Numerical comparison

In order to demonstrate that the integral representation of the Kapteyn series B is the same
as the direct series, it is appropriate to consider a few numerical examples. First, note that
from the physical perspective of the high intensity Compton scattering viewpoint it makes
little sense to evaluate the series B for any value of z > 1. This limitation arises because the
various series that are analytically available in equations (12a), (12b) and (12c) have limits
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of z < 1 for convergence. Accordingly, in order to illustrate the behavior of the series B in
respect of the integral representation it suffices to present one value of z. We have chosen
z = 0.1 although other values of z have also been investigated with equally good agreement
for the series and integral representation. Second, note that there is no limitation on the value
of x > 0 because the factor 1+nx in the denominator of the series for B enhances convergence
of the series over the situation with x = 0. Two simple cases are presented: (1) when z is
held fixed at z = 0.1 and x is allowed to vary (see figure 1); (2) when x is held fixed (at
x = 0.1) and z is allowed to vary (see figure 2). Numerical evaluation of the series B was
accomplished in two ways: by direct summation of the series and by direct evaluation of the
integral representation. The numerical evaluation of the infinite sum is carried out as follows:
first, a number of terms (usually 100) are summed directly; to accelerate the convergence of
the sum, then Wynn’s epsilon method (see, e.g., Brezinsky 2000, Hamming 1986) is used,
which samples a number of additional terms (usually 100) in the sum, and then fits them to a
polynomial multiplied by a decaying exponential. Thus, the series are well approximated and
the required computer time is kept moderate. The convergence of the sums, in addition, is
guaranteed by analytical considerations. Furthermore, numerical integrations are carried out
using standard techniques such as adaptive step sizes (e.g. Press et al 2007).

However, some care has to be taken with the logarithmic singularity in the integral
representation. Because Mathematica R© version 7.0 is used, this problem is dealt with
automatically. Using other packages, however, appropriate measures would have to be taken
manually.

The degree to which the direct series evaluation and the integral representation are in
agreement is measured by �B defined (in percent) as

�B ≡ 100

∣∣∣∣Summation − Integral

Summation

∣∣∣∣ (26)

and is evaluated for each value of z and x used in the numerical work. For each of the
two illustrative cases (see figures 1 and 2), the deviation is always less than 0.05%; of
course, such accuracy depends on the exact numerical details. The examples illustrate
nonetheless the excellent agreement between the direct summation of the Kapteyn series B from
equation (16) and the integral representation of equation (23).

In the astrophysical application of Harvey et al (2009, their section IV.C), namely the
calculation of photon emission rates as a function of the scattering angle, expressions appear
that are composed of the sums SN,M(x, z) and TN,M(x, z) and not just of the sum B. A referee
noted that, to get there, additional steps—mostly taking derivatives of the series QN(y, z), see
section 2.2—have to be executed before the calculation of emission rates can be done, which
requires a much higher level of convergency. However, any derivative with respect to y = 1/x

can be carried out inside the integral of the functions J±, equation (24), before performing the
integration. Because taking derivatives can always be done analytically, one is always left with
the three numerical integrals in equation (23). Although such may be time-consuming, the
benefit is that one has to worry only about the convergence of the integrals instead about that
of the Kapteyn series, the latter subject being less understood and less mature than numerical
integration. Furthermore, our intention is to both enable and encourage the interested reader
in evaluating Kapteyn series that are more complicated than the basic types that have been
known for almost a century now. Recent successful calculations of various Kapteyn series
show that such is indeed possible. To serve as an example, the series S1,2, which appears in
Harvey et al (2009, their equation (78)), will be evaluated. Using equation (11b), one obtains

6
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x
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B x,0.1
Integral evaluation of the sum B

0.2 0.4 0.6 0.8 1.0
x

0.01
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0.03

0.04

B
Relative deviation Integration Summation

Figure 1. Left panel: the series B from equation (16) for varying x with z = 0.1 being held fixed.
Right panel: the relative deviation �B between direct summation and evaluation of the integral
representation from equation (23), as defined in equation (26).

0.2 0.3 0.4 0.5
z

0.01

0.02

0.03

0.04

0.05
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Integral evaluation of the sum B
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z
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0.02

0.03

0.04

B
Relative deviation Integration Summation

Figure 2. Left panel: the series B from equation (16) for varying z with x = 0.1 being held fixed.
Right panel: the relative deviation �B between direct summation and evaluation of the integral
representation from equation (23), as defined in equation (26).

S1,2(x, z) = −∂B

∂x
= 1

x
B(x, z) − 1

π2x

∫ π/2

0
dθ

∫ π/2

0
dψ

∂

∂x
(J− + J+) (27)

with

∂J±
∂x

= 2qx ln q [cos(2a±)]

1 + 2 cos(2a±)qx + q2x
. (28)

The results are shown in figures 3 and 4 for varying x and z, respectively, showing again
excellent agreement. Note that, for the numerical evaluation of the series S1,2, the same
accuracy goals as for the series B have been used.

3. Summary and discussion

While the problem of high intensity Compton scattering in laboratory experiments provided
the initial driving force to reduce the Kapteyn series involved to some form of order so that
analytical techniques could be brought to bear to aid in the understanding of the spectral
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Figure 3. Left panel: the series S1,2 from equation (27) for varying x with z = 0.1 being held
fixed. Right panel: the relative deviation �B between direct summation and evaluation of the
integral representation from equation (23), as defined in equation (26).
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Figure 4. Left panel: the series S1,2 from equation (27) for varying z with x = 0.1 being held
fixed. Right panel: the relative deviation �B between direct summation and evaluation of the
integral representation from equation (23), as defined in equation (26).

results, the motivation for this paper is also underscored by astrophysical problems of high
intensity output from astrophysical objects.

The combination of such problems requires that one be able to address the mathematical
structure of the groups of Kapteyn series involved in a way that allows one to evaluate better
both the functional dependence of such series on the parameters involved and also the general
dominance of individual parameters in controlling the overall patterns of behavior.

For the high intensity scattering problem a little effort shows that all except one of the
many Kapteyn series involved can be reduced to closed analytic form, thereby facilitating
the determination of the spectral behavior. The last remaining Kapteyn series involved is not
analytically tractable but even then can be reduced to an integral representation so that it, too,
allows one to better investigate the dependence on parameters involved. A couple of numerical
examples indicated the close agreement between the integral representation and the Kapteyn
series (to better than about a fraction of 10−4) and other cases (not displayed) show similar
accuracy.

The point has now been reached where, depending on each individual application, one can
immediately use the Kapteyn series procedures and results presented here without the need
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for massive computer numerical work that would, in any event, mask the structural properties
and interplay of the various Kapteyn series involved in high intensity Compton scattering, and
that has been one of the main motivational aspects that helped formulate much of the work
presented here.
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